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LETTER TO THE EDITOR 

Real-space renormalisation of the smoothly inhomogeneous 
semi-infinite Ising model 

Theodore W Burkhardt and Ihnsouk Guim 
Department of Physics, Temple University, Philadelphia, Pa 19122, USA 

Received 6 September 1983 

Abstract. Using the Migdal-Kadanoff renormalisation method, we study the semi-infinite 
two-dimensional king model with inhomogeneous nearest-neighbour coupling constants 
that deviate from the bulk coupling by Am-Y for large m, m being the distance from the 
edge. The approximation correctly predicts irrelevance of the inhomogeneity for y > v-', 
a surface magnetic phase at the bulk critical temperature for y < U-', A >  0, and a 
non-universal A-dependent surface magnetic index in the marginal case y = v-'. 

Recent work (Hilhorst and van Leeuwen 1981, Blote and Hilhorst 1983, Burkhardt 
and Guim 1983) has revealed a rich variety of surface critical behaviour in the 
semi-infinite Ising model with coupling constants that depend on the distance m from 
the surface. These papers consider nearest-neighbour couplings K,, m'= 1, 2 , .  . . (see 
figure 1) which approach the bulk coupling KB as 

K ,  = K B + A m - Y ,  m >> 1 (1) 
for large m. We summarise some of the exact results. 

(1) For y >  1 the inhomogeneity does not alter the universal surface critical 
behaviour. At bulk criticality the pair correlation function of the boundary spins, gll( r ) ,  
falls off as r - '~ ,  qI1 = 1, just as in the homogeneous semi-infinite case A = 0. 

Figure 1. A portion of the semi-infinite triangular lattice. The numbers m = 1 ,  2 , .  . . label 
the bonds K ,  in order of increasing distance from the edge. In the Migdal-Kadanoff 
renormalisation the broken bonds are moved onto the full bonds as indicated by arrows, 
with each broken bond shared equally by two full bonds. Then the spins represented by 
open circles are eliminated by decimation. 
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(2) For y < 1 the surface critical behaviour is modified. At the bulk critical 
temperature there is a spontaneous boundary magnetisation m, in the case A > 0 of 
stronger couplings near the surface. For either sign of A, gli(r) decays according to 
the anomalous exponential form exp[-( r /  i)’-y], i- IA[-”(’-y) at bulk criticality. 

(3) In the marginal case y = 1 there is a spontaneous boundary magnetisation at the 
bulk critical temperature for A greater than a threshold value A,. For A < A, and 
A > A,, g,,( r )  - g,,(co) - r -v  ( A ) ,  with a non-universal exponent q ( A )  = 11 - A/A,I. At 
A = A,, gli( r )  - (In r ) - ’ .  For a more extensive discussion of the marginal case, see Blote 
and Hilhorst (1983). 

These results and analogous results for a smoothly inhomogeneous Gaussian model 
(Burkhardt and Guim 1982) are compatible with a local renormalisation picture 
applicable to any smoothly inhomogeneous system with a divergent bulk correlation 
length (Burkhardt 1982a, Cordery 1982). In this picture the bulk renormalisation 
transformation K’ = R ( K )  for the coupling constants of a homogeneous infinite system 
is replaced by 

K L = R (Kbm),  m >> 1 (2) 
in the smoothly inhomogeneous semi-infinite case. Here b is the factor by which 
lengths are rescaled. Linearising (2) about the bulk fixed point KT, gives 

K L  -KT, = b”(Kb,-KT,), m >> 1 (3) 
where the scaling index yr and the bulk exponent v satisfy yr = v-’. Substituting 
K L  = KT, K ,  = KT, +Am-Y into (3), one finds that A transforms according 
to 

(4) 

Equation (4) implies that the smooth inhomogeneity is a ‘relevant’ parameter (Fisher 
1974) which modifies the critical behaviour for y < v-l but is ‘irrelevant’ for y > v-’, 
A scaling acalysis of the correlation function based on (4) indicates that the characteris- 
tic length 5 in the correlation function gll(r) for y < v-’ diverges as 

A ’ =  b ( ’ - “ Y ) / Y A  

( 5 )  i.- IAJ-v/(l-vY) 

as A + 0 at the bulk critical temperature (Burkhardt 1982a). A similar analysis of the 
boundary magnetisation m, gives 

( 6 )  
as A -+ 0 from above (Burkhardt and Guim 1983). Here PI is the conventional surface 
exponent associated with the ‘ordinary transition’ (Binder 1983). 

In this letter we carry out an approximate Migdal-Kadanoff real-space renormalisa- 
tion (Kadanoff 1976, Burkhardt 1982b) of the smoothly inhomogeneous two- 
dimensional Ising model. The qualitative predictions of this simple approach agree 
nicely with many of the results mentioned above, and it provides a kind of insight 
which the exact calculations do not. Since the approximate renormalisation transforma- 
tion has the form (2) for large m, it correctly predicts that the inhomogeneity of the 
couplings is relevant for y < v-’ and irrelevant for y >  v-’. Knowing the explicit 
transformation for all values of m, we also obtain information which does not follow 
from the locality assumption (2) alone. In the marginal case y = v-l the approximate 
renormalisation does indeed yield an A-dependent surface magnetic index and a 
spontaneous magnetisation for A greater than a threshold value A,. 

m, - API/(’-”Y) 
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Several authors (SvrakiC and Wortis 1977, Burkhardt and Eisenriegler 1977, 
Dunfield and Noolandi 1980, Lipowsky and Wagner 1981, Nagai and Toyonaga 1981) 
have applied real-space renormalisation techniques to the homogeneous semi-infinite 
Ising model. In our work on smooth inhomogeneities, we begin with a semi-infinite 
triangular lattice of spins (figure l),  with bonds K,, m = 1, 2 , .  . . numbered in order 
of increasing distance from the edge. In the Migdal-Kadanoff renormalisation of the 
system, the broken bonds in figure 1 are moved onto the full bonds as indicated by 
arrows, with each broken bond shared equally by two full bonds. Then the spins 
represented as open circles are eliminated by decimation. The remaining spins, denoted 
by full circles, form a triangular lattice with twice the initial lattice constant. Using 
the same numbering scheme K L, m = 1,2,  . . . for the renormalised coupling constants, 
we obtain the transformation 

K ;  = F ( K I + i K z , K ~ + i K 2 )  (7) 

K L  = F(;K,,-2+ KzmPl  +iKz,, 3KZm-2+ 1 Kzm-1+4K2,), m = 3 , 5 , 7 ,  . . .  (8) 

m = 2 , 4 , 6 ,  . . . .  (9) 1 K L = F (  tK2m -2 + tKz  m - I 9 ~ K 2 m -  I + iK2m 9 

For Ising spins the function F is defined by 

F(K,,  K b )  = tanh-’(tanh K ,  tanh K b ) .  (10) 

Note that the transformation reduces to the form (2) for m > > l  in the case of K ,  
which vary sufficiently slowly with m. Thus the conclusions drawn from (2) apply. 
We shall see this more explicitly below. 

In order to calculate the surface magnetic scaling index y h ,  (Binder 1983), one 
must generalise the renormalisation transformation to  include a weak magnetic field 
hl applied to the boundary spins. Moving the bonds as described above (but not the 
local fields) and decimating, we obtain 

hi = A ( K , + t K 2 ) h l + O ( h : )  (11) 

A ( K )  = ( l + t a n h  K)’/[l+(tanh K)’]. (12) 

where the function A is defined by 

Yhl is given by y h ,  =In A(KT +iK:  )/ln 2 at a fixed point of the transformation. A 
system with a spontaneous surface magnetisation is mapped onto a discontinuity fixed 
point (Nienhuis and Nauenberg 1975, Niemejjer and van Leeuwen 1976) with 
K f  +;KT = CO and y h l  = d - 1 = 1. 

In the renormalisation transformation (7)-(9), all of the K L ,  except KI and Kh 
are determined by K ,  with m > m‘. Deep inside the system m = 2m‘ as in (2). Thus, 
as the transformation equations are iterated, there is a flow of information about the 
interior toward the surface. It is the asymptotic form of K ,  for large m which ultimately 
determines the fixed point onto which the system maps and hence the universality 
class. Since K ; ,  Kk, . . . are independent of K 1  and K 2 ,  information about the semi- 
infinite nature of the system does not propagate into the interior on repeated renormali- 
sation. This property, which is common to all the approximate real-space renormalisa- 
tion groups for semi-infinite systems referenced above?, leads to difficulties in the 
calculation of the magnetisation profile (Burkhardt and Eisenriegler 1977). 

+The method of Hilhorst and van Leeuwen (1981) is based on an exact mapping of the coupling constants 
with no change in the length scale. As the mapping is repeated, a surface-induced inhomogeneity does 
penetrate progressively deeper into the interior. 
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Equations (7)-(9) have a fixed point K f  = 0.034, K = K = 0.305 [0.275], m = 2, 
3, . . . associated with the ‘ordinary’ transition of the homogeneous semi-infinite system. 
The number in brackets is the exact value In 3 of the bulk critical coupling. For the 
thermal scaling index y, = ln(dF(2K g, 2K ) /dK)/ ln  2 and the surface magnetic scaling 
index Yh,, one finds 0.747 [ l ]  and 0.440 [$I, respectively. 

Small deviations of the coupling constants from the ‘ordinary’ fixed point may be 
expanded in terms of the right eigenvectors q:) of the matrix Tmn =dK& (K*)/dK, 
(Fisher 1974). With the corresponding eigenvalues written as 2y=, the eigenvectors 
satisfy 

(13) qy) = 2Y,-Ym(;qy+;qy)) 

q ( m ) = 2 yr-ym ($p :”; - + tq :””- ’ + +q y; ) , m = 3 , 5 , 7 , .  . . (14) 

9:) = 2y!-Ym($4fy”-*+;q:”;-’ +;qy), m = 2 , 4 , 6 , .  . . (15) 

where yl = -0.489 in equation ( 1  3). 
is completely 

determined once its behaviour for large m is specified. There are two irrelevant surface 
eigenvectors with qm = 0, m > 2. Apart from these, the only smoothly inhomogeneous 
solutions of ( 1  3)-( 15)  which do not diverge as m + CO have the asymptotic form 

qE)a m-y, m even or odd (16) 

From the structure of equations (13)-(15), it follows that 

m even 
m odd 

where y 3 0. The scaling indices y, = ys(y),  yNS(y) corresponding to the symmetric 
and non-symmetric eigenvectors 9Ei, 9:” are 

Since y, < 2, yNs(y) is negative, i.e. the non-symmetric eigenperturbation is 
irrelevant. In a system in which K, - K g  aqFs) ,  the compensating deviations of the 
even and odd couplings leave the system at bulk criticality, and the surface critical 
behaviour is ‘ordinary’. The slope dK,,,,/dKodd = -$, which follows from (17), is also 
implied by the exact critical surface. 

We are particularly interested in coupling constants of the form ( l ) ,  i.e. K, - K g  = 
A*:). From (18) we see that A scales as in (4)  and conclude once again that there 
is ‘ordinary’ surface critical behaviour for y > v-’ and modified behaviour for y < v-’. 

Because of an inconsistency (Kadanoff 1976, Burkhardt 1982b) in the scaling of 
the correlation function under the Migdal-Kadanoff transformation, we have not 
attempted to calculate gli( r )  directly with the approximate renormalisation group. 
However, from (4) it is clear that the quantity 5‘(A)alAl-”’(’-”Y’ scales like a correla- 
tion length, i.e. <(A’) = b-’i (A).  Thus it is not surprising that the quantity appears 
as a characteristic length at the bulk critical temperature in the exact Ising results for 

In our approximate renormalisation scheme the boundary magnetisation per spin 

(20) 
The transformation equations (7)-(9) map initial couplings of the form ( 1 )  with y < v-l 

y < U-’. 

transforms as 

m,(KI,  K2, .  . .) =t,A(K, +iK,)m,(K’, ,  Kb,.  . .). 
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and K B  = K onto a weak-coupling fixed point with K*, = 0 for A < 0 and onto a 
strong-coupling fixed point with K *, = 00 for A > 0. Thus for y < v-l ,  A > 0 there is 
a spontaneous surface magnetisation at the bulk critical temperature. Equations (18) 
and (20) imply that the leading singular contribution to m, scales as m l ( A ) =  
2 Y h ,  -d+l  ml(2Yr-YA). It follows that m, vanishes as Ap~’‘’-”y’  as A + 0 in accordance 
with (6). Here / 3 ,= (d-1 -yh , ) /y t  is the conventional exponent of the ordinary 
transition (Binder 1983). The exact Ising result m ,  - A1’[2(1-y)1 (Burkhardt and Guim 
1983) is also consistent with (6 ) .  

We now turn to the marginal case y = Y-’. At bulk criticality, equations (7)-(9) 
map initial couplings of the form (1)  with y = Y-’ onto an A-dependent fixed point 
K*,  ( A ) ,  m = 1, 2 , .  . . , i.e. a fixed line in the space of coupling constants. For large m, 
K*, ( A ) = K * ,  + A m - Y .  We have determined K*, ( A )  for smaller values of m by 
numerical iteration of the transformation equations. Results €or four representative 
values of A are shown in figure 2. Each of the K*, ( A )  increases monotonically with 
A. All of the K*,  ( A )  are finite for finite A except the surface coupling KT ( A ) .  From 
(7) one finds that KT ( A )  diverges (as - a  ln(A,- A ) )  as A approaches the critical value 
A, at which K :  (A,)  =In 2 from below. For A >  A,, KT ( A )  =CO. 

- 0.22 x.. 

m 

Figure 2. Fixed-point parameters K :, ( A )  for four values of A in the marginal case y = v-’, 
For A > A , = 0 . 2 3 7 ,  KT(A)=oo.  

Since the fixed-point couplings KF (A) ,  K :  ( A )  vary with A, the scaling index Yh,, 

calculated as described following equation ( 12), is non-universal. The full line in figure 
3 shows the A dependence of yh, given by the approximate renormalisation group. 
For A > A,, Yh, has the value 1, which corresponds to a spontaneous surface magnetisa- 
tion at the bulk critical temperature. The straight broken line indicates the exact Ising 
result, which follows from vI1 = 11 -_A/A,I and the scaling relation vll = d - 2yhl (Binder 
1983). The exact value of A,is l / d 3  = 0.577, whereas the approximate renormalisation 
group gives 0.237. 
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-OS t 
Figure 3. The non-universal surface magnetic index yh ,  as a function of A in the marginal 
case y = v-’. The full line shows the prediction of the approximate renormalisation group. 
The straight broken line indicates the exact result. The approximate renormalisation group 
gives U-’ = 0.747, A, = 0.237 in place of the exact values Y-’ = 1, A, = 1 / 1 3  = 0.577.  

According to Blote and Hilhorst (1983) and Burkhardt and Guim (1983), in the 
marginal case y = v-’, m ,  disappears as (A-A,)”’ as A-* A, from above at bulk 
criticality. We now consider the corresponding prediction of the approximate renor- 
malisation group. 

In terms of the variables U = tanh K , ,  v = tanh($K2), the transformation (7) for the 
surface coupling K 1  takes the form 

U’ =[(U + U)/( 1 + uv) ] ’ .  (21) 

The fixed point U* = 1 of (21) is attractive (corresponding to KT ( A )  =CO in figure 2) 
for u * ( A ) s f ( o r  K T ( A ) a l n 2 ) .  Near A,, v*(A)=f+c(A-A,) ,wherecisaposit ive 
constant. Writing U ’  = 1 - Su’, U = 1 - Su, and v = U* + 6v and linearising (21) for A 
near A, gives 

SU’ = [l -:c(A - A,)] SU. (22) 

Equation (22) clearly reflects the change in stability of the fixed point U* = 1 at A = A,. 
Note that 6u‘ depends on Su but not on 6v and the other couplings K3,  K 4 , .  . . . For 
small 6u (large K , ) ,  A(K1 +$K,) + 2( 1 - & ( 6 ~ ’ ) ~ ) .  Thus (20) becomes 

m,(Su) =[I  - & ( S U ’ ) ~ ] ~ ~ ( S U ’ ) .  (23) 

Iterating (22) and (23) with the boundary condition m,(0)=1,  one finds that m, 
vanishes as exp[- k l  ( A  -A,)] as A + A, from above. Here k is a positive constant which 
depends on the initial value of Su. 

Thus the approximate renormalisation group predicts that m, vanishes with an 
essential singularity at A = A, instead of the power law m, - ( A  - A,)”z. There are 
other exact results for y = v-I,  A > A, for which we have found no simple explanation 
in terms of real-space renormalisation, for example, the non-universality of the 
exponent ~ 1 1  and the asymmetry of the exponent vII (Blote and Hilhorst 1983). 

Despite these shortcomings, the approximate renormalisation does capture the 
essential difference between the cases y > v-l and y < v-’. The calculations described 
here served us as a valuable guide in formulating the scaling predictions (5) and (6). 
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The qualitative picture (see figure 2) which gives rise to the non-universality of y h ,  is 
independent of the details of the spin model and renormalisation procedure. Thus we 
expect A-dependent surface critical exponents to be a general property of smoothly 
inhomogeneous semi-infinite systems with y = v-'. Exact results for the Gaussian 
model (Burkhardt and Guim 1982) support this view. 

We thank K Binder, H J Hilhorst and J M J van Leeuwen for stimulating discussions. 
We appreciate the hospitality of the Institut fur Festkorperforschung, Julich, where 
this work was begun. 
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